If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2-64=0
a = 125; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·125·(-64)
Δ = 32000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32000}=\sqrt{6400*5}=\sqrt{6400}*\sqrt{5}=80\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{5}}{2*125}=\frac{0-80\sqrt{5}}{250} =-\frac{80\sqrt{5}}{250} =-\frac{8\sqrt{5}}{25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{5}}{2*125}=\frac{0+80\sqrt{5}}{250} =\frac{80\sqrt{5}}{250} =\frac{8\sqrt{5}}{25} $
| 7k=3=23 | | 6c=5c-2 | | 15+5x=12+6x | | b-3=1-b | | 9-6e=-45 | | 7c-100=2c+200 | | 11p+17=10p+13 | | 5d+21=10d-19 | | 60+13y=3y | | 5w-27=-4w | | 10k-19=31 | | 100+23.75=10+43.75x | | 7250+0,31x=8000+0,28x | | 0=20*20+2a*50 | | 13.5-x=5 | | 1/(x-1)+1/(x-2)+1/(x-3)=0 | | 24=4t+t^2 | | 2(3a+4)+5(a+1)=35 | | 4(r-1)+3(6r+2)=13 | | 6(2n+5)+3(n-4)=30 | | 18(t+1)+4(2-t)=33 | | 1/8+1/6=1/x | | 3(p+1)+2(3p+5)=31 | | 36-4y÷2=6 | | 5(3y+1)+2(y-2)=18 | | 11/8=x3 | | 2(3a+4)=5(a+1)=35 | | 0.12x0.6=0.072 | | X=2,y=-1 | | 2^2x+5=37 | | 8m^2-3m+6=0 | | 15=5x-3+4x |